Authors: Celia Corral-Vazquez, Joan Blanco, Riccardo Aiese-Cigliano, Sarrate Zaida, Francesca Vidal, Ester Anton


  • Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
  • Sequentia Biotech SL, Barcelona, Spain

Publication: Systems Biology in Reproductive Medicine

Date: March, 2023

Link: A transcriptomic insight into the human sperm microbiome through next-generation sequencing


The purpose of this study is to provide novel information through Next Generation Sequencing (NGS) for the characterization of viral and bacterial RNA cargo of human sperm cells from healthy fertile donors. For this, RNA-seq raw data of poly(A) RNA from 12 sperm samples from fertile donors were aligned to microbiome databases using the GAIA software. Species of viruses and bacteria were quantified in Operational Taxonomic Units (OTU) and filtered by minimal expression level (>1% OTU in at least one sample). Mean expression values (and their standard deviation) of each species were estimated. A Hierarchical Cluster Analysis (HCA) and a Principal Component Analysis (PCA) were performed to detect common microbiome patterns among samples. Sixteen microbiome species, families, domains, and orders surpassed the established expression threshold. Of the 16 categories, nine corresponded to viruses (23.07% OTU) and seven to bacteria (2.77% OTU), among which the Herperviriales order and Escherichia coli were the most abundant, respectively. HCA and PCA displayed four clusters of samples with a differentiated microbiome fingerprint. This work represents a pilot study into the viruses and bacteria that make up the human sperm microbiome. Despite the high variability observed, some patterns of similarity among individuals were identified. Further NGS studies under standardized methodological procedures are necessary to achieve a deep knowledge of the semen microbiome and its implications in male fertility.