Authors:A Riccini, M. E. Picarella, F. De Angelis & A. Mazzucato

Institutions:

  • Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy

Acknowledgements: Riccardo Aiese Cigliano and Walter Sanseverino

Publication: Plant Molecular Biology

Date: October 2020

Full paper: https://link.springer.com/article/10.1007/s11103-020-01086-9

Abstract:

Domestication of cultivated tomato (Solanum lycopersicum L.) included the transition from allogamy to autogamy that occurred through the loss of self-incompatibilty and the retraction of the stigma within the antheridial cone. Although the inserted stigma is an established phenotype in modern tomatoes, an exserted stigma is still present in several landraces or vintage varieties. Moreover, exsertion of the stigma is a frequent response to high temperature stress and, being a cause of reduced fertility, a trait of increasing importance. Few QTLs for stigma position have been described and only one of the underlying genes identified. To gain insights on genes involved in stigma position in tomato, a bulk RNA sequencing (RNA-Seq) approach was adopted, using two groups of contrasting genotypes. Phenotypic analysis confirmed the extent and the stability of stigma position in the selected genotypes, whereas they were highly heterogeneous for other reproductive and productive traits. The RNA-Seq analysis yielded 801 differentially expressed genes (DEGs), 566 up-regulated and 235 down-regulated in the genotypes with exserted stigma. Validation by quantitative PCR indicated a high reliability of the RNA-Seq data. Up-regulated DEGs were enriched for genes involved in the cell wall metabolism, lipid transport, auxin response and flavonoid biosynthesis. Down-regulated DEGs were enriched for genes involved in translation. Validation of selected genes on pistil tissue of the 26 single genotypes revealed that differences between bulks could both be due to a general trend of the bulk or to the behaviour of single genotypes. Novel candidate genes potentially involved in the control of stigma position in tomato are discussed.