Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides


Valeria Scala, Alessandro Grottoli, Riccardo Aiese Cigliano, Irantzu Anzar, Marzia Beccaccioli, Corrado Fanelli, Chiara Dall’Asta, Paola Battilani, Massimo Reverberi and Walter Sanseverino

Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.


We're not around right now. But you can send us an email and we'll get back to you, asap.


Log in with your credentials

Forgot your details?