Authors: Sivasankari Ramadurai,Usha Balasundaram

Institutions:

  • Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603 203, India

Publication: Physiology and Molecular Biology of Plants

Date: December 2020

Full paper: https://link.springer.com/article/10.1007/s12298-020-00915-x

Abstract:

Plant and rhizobacterial interactions contribute partly to a plant’s medicinal properties and are well studied through metagenomics. In this study, 16S rDNA, 18S rDNA, and ITS meta-sequencing were performed using the genomic DNA obtained from the rhizosphere of Caesalpinia bonducella—a medicinal shrub widely used to treat polycystic ovary syndrome (PCOS). Of the 665 Operational Taxonomic Units (OTUs) obtained from 16S rDNA sequencing, 23.9% comprised of microbes that increase the therapeutic value of plants (Bacillus, Paenibacillus), 6.4% belonged to stress and drought tolerant microbes (Pseudomonas, Rhizobium, Serratia), 8% belonged to plant-growth promoting rhizobacteria—predominantly Proteobacteria, and Firmicutes and the remaining were the microbes performing various other functions. Alpha diversity indexing by GAIA-metagenomics tool revealed the presence of a highly diverse group of microbes in the rhizosphere of C. bonducella; Chao.1 index (665), Shannon Weiner index (3.53), Simpson index (0.83) and Fisher index (106.13). The highly diverse microbes lingering around the roots of C. bonducella could possibly be due to a strong symbiotic association with the plant; root exudates nourish the microbes and the microbes in turn enrich the medicinal value of the plant.